Title: | LOw Rand and sparsE Covariance matrix estimation |
---|---|
Description: | Estimate covariance matrices that contain low rank and sparse components |
Authors: | Xi (Rossi) LUO |
Maintainer: | Xi (Rossi) LUO <[email protected]> |
License: | GPL-2 |
Version: | 0.6.1 |
Built: | 2024-11-11 04:28:58 UTC |
Source: | https://github.com/cran/lorec |
Estimate covariance matrices that contain low rank and sparse components
lorec(Sig, L, S, lambda, delta, thr=1.0e-4, maxit=1e4)
lorec(Sig, L, S, lambda, delta, thr=1.0e-4, maxit=1e4)
Sig |
Covariance matrix:p by p matrix (symmetric) |
L |
Initializing the low rank component. Default diag(Sig). |
S |
Initializing the sparse component. Default diag(Sig). |
lambda |
(Non-negative) regularization parameter (scalar) for the
low rank component, |
delta |
(Non-negative) regularization parameter (scalar) for
the sparse component, |
thr |
Threshold for convergence. Iterations stop when the relative Frobenius norm change of consecutive updates is less than the threshold. Default is 1e-4. |
maxit |
Maximum number of iterations. Default 10,000. |
Estimate a low rank plus sparse covariance matrix using a composite penalty, nuclear norm plus L1 norm (lasso). This covariance structure can be verified in many classical models, such as factor and random effect models. The algorithm is based on Nesterov's method, suitable for large-scale problems with low memory costs. It achieves the optimal global convergence rate of smooth problems under the black-box model.
A list with components
L |
Estimated low rank component |
S |
Estimated sparse component |
Xi Luo (2011). High Dimensional Low Rank and Sparse Covariance Matrix Estimation via Convex Minimization. Technical Report, Department of Biostatistics and Center of Statistical Sciences, Brown University. arXiv: 1111.1133.
set.seed(100) Sig <- matrix(0.8, 4,4) + diag(0.2,4) x<-matrix(rnorm(50*20),ncol=4) s<- var(x) a<-lorec(s, lambda=.01, delta=0.01)
set.seed(100) Sig <- matrix(0.8, 4,4) + diag(0.2,4) x<-matrix(rnorm(50*20),ncol=4) s<- var(x) a<-lorec(s, lambda=.01, delta=0.01)